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Abstrac t
Fisheries management is a complex task made even more challenging by rapid and 
unprecedented socioecological transformations associated with climate change. The 
Resist-Accept-Direct (RAD) framework can be a useful tool to support fisheries man-
agement in facing the high uncertainty and variability associated with aquatic ecosys-
tem transformations. Here, RAD strategies are presented to address ecological goals 
for aquatic ecosystems and social goals for fisheries. These strategies are mapped 
on a controllability matrix which explores the ability to guide a system's behaviour 
towards a desired state based on ecological responsiveness and societal receptivity 
to change. Understanding and improving the controllability of aquatic systems and 
fisheries can help managers to maintain the broadest suite of available RAD manage-
ment strategies.
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1  |  R APIDLY TR ANSFORMING AQUATIC 
ECOSYSTEMS

Freshwater and marine ecosystems are transforming at unprece-
dented rates under the influence of climate change (Arimitsu et al., 
2021; Halpern et al., 2019; Hollowed et al., 2013; Weiskopf et al., 
2020) and other anthropogenic stressors (Best, 2019; Halpern 
et al., 2008; Reid et al., 2019). Aquatic systems can transform via 
many mechanisms, but climate change often exacerbates the im-
pacts of other stressors. When these factors interact, aquatic sys-
tems can respond in a nonlinear fashion through feedback loops, 
synergies, threshold effects, and time lag responses, often with 
uncertain and unpredictable outcomes (Liu et al., 2007; Staudinger 
et al., 2021). So-called “regime shifts,” have been documented in 
both marine and freshwater systems. For example, Arctic lakes 
have undergone widespread species changeover and ecological 
reorganisations as a result of warming temperatures (Smol et al., 
2005). The North Pacific and North Atlantic oceans have simi-
larly experienced multiple warm phases that increase sea-surface 
temperatures and alter trophic productivity, resulting in shifts in 
the abundance and recruitment of forage and ground fish popula-
tions (Laurel et al., 2021; Litzow et al., 2020; Nielsen et al., 2021; 
Pershing et al., 2015, 2021).

These rapid changes impact the services that aquatic ecosys-
tems provide, including provisioning services (e.g. food production, 
water supplies, livelihoods), regulating / maintenance services (e.g. 
climate regulation) and cultural services (e.g. support for cultural and 
spiritual beliefs, recreation) (Lipton et al., 2018; Maes et al., 2014). 
Although we acknowledge that fish have other important ecosystem 
roles (e.g. Lynch et al., 2021a), here, our focus is on fisheries, which 
we consider to be socioecological systems that encompass targeted 
fish populations, the ecosystem that supports those fish popula-
tions, the stakeholders involved in the system (including fishers, 
regulators, and other stakeholders), and the sociopolitical processes 
governing stakeholders.

There are diverse examples across biomes of fisheries being 
transformed by climate change (Figure 1). In the Gulf of Alaska, 
shifts in climate coupled with fisheries exploitation have been linked 
to the transformation of a system formerly dominated by shrimp, 
Pacific herring Clupea pallasii Valenciennes, and capelin Mallotus 
villosus (Müller) to one dominated by groundfish species (Anderson 
& Piatt, 1999; Litzow et al., 2006, 2014). More recently, changing 
climate patterns have diminished oceanic mixing which has led to 
persistent, unprecedented heatwaves in the Gulf of Alaska, dramat-
ically altered trophic dynamics, declines in Pacific cod Gadus macro-
cephalus Tilesius stocks, and subsequent reductions in harvest levels 
(Barbeaux et al., 2020). Likewise, in the Gulf of Maine, both climate 
impacts and fishing pressure have been linked to declines in Atlantic 
cod G. morhua Linnaeus and rapid increase in American lobster 
Homarus americanus H. Milne Edwards populations (Goode et al., 
2019; Le Bris, 2018; Pershing et al., 2015, 2021). And, in Caribbean 
freshwaters, extreme drought induced by climate change has been 
associated with a species invasion to an urban stream ecosystem 

from a reservoir source population; this invasion shifted the as-
semblage composition from indigenous to non-indigenous species 
dominance and had negative consequences for an indigenous fish 
population with recreational fishing value (Ramírez et al., 2018). 
Such transformations can lead to reduced harvest and eventual fish-
ery closures, impacting fishing revenues and necessitating adapta-
tions by fishers (Szymkowiak, 2020).

Fisheries management is profoundly complicated by these rapid 
and substantial socioecological system changes (Voss et al., 2014). 
Traditional management approaches may no longer be effective in 
maintaining once-desired outcomes. System controllability (i.e. the 
ability to guide a system's behaviour towards a desired state through 
the manipulation of ecological and social variables) constrains the 
set of available management options. Given the above issues, the 
Resist-Accept-Direct (RAD) framework can be a useful tool to sup-
port fisheries management in the face of great uncertainty and 
variability associated with aquatic ecosystem transformation. As a 
holistic framework encompassing both ecological and social pro-
cesses that combine to govern fishery dynamics, the RAD approach 
to managing transformative system change is useful for implement-
ing ecosystem approaches to fisheries management (sensu Hilborn, 
2004; Link, 2002; Pikitch et al., 2004). The objectives of this article 
are to: (1) introduce the RAD framework in the context of both eco-
logical and social processes that define marine and freshwater fish-
eries, (2) share examples of existing RAD strategies for transforming 
fisheries, and (3) provide insights into how system controllability 
affects the feasibility of RAD management options for marine and 
freshwater fisheries.

2  |  R AD STR ATEGIES FOR FISHERIES

The RAD framework (Aplet & Cole, 2010; Lynch et al., 2021b; 
Schuurman et al., 2022; Thompson et al., 2021) provides fisheries 
managers with three overarching management pathways to address 
transforming aquatic ecosystems:

•	 Resist the trajectory of change, working to maintain the current or 
to return to historical ecosystem configuration (i.e. its composi-
tion, structure, or function) and ecosystem services;

•	 Accept the trajectory, allowing the ecosystem to change autono-
mously; or,

•	 Direct the trajectory by actively shaping the change in the eco-
system towards a preferred new configuration and ecosystem 
service flows.

The RAD framework is particularly useful in framing manage-
ment responses to ecosystem transformations because it encom-
passes the entire decision space available to a manager. Temporal 
scales (e.g. the speed of system change, decision timelines), spatial 
scales (i.e. small compared to larger ecosystems), and the magnitude 
of anticipated change factor into RAD strategy selection (Magness 
et al., 2022b; Thompson et al., 2021). Ecological, societal, and 
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financial factors also contribute to the feasibility of success for RAD 
strategies (Lynch et al., 2021b). Familiar adaptive management pro-
cesses can be modified to fit within and help operationalize the RAD 
management framework (Lynch et al., 2022) if plausible socioecolog-
ical trajectories are identified (Magness et al., 2022a) and the inter-
nal and external factors that shape RAD decisions are acknowledged 
(Clifford et al., 2022). For freshwater and marine fisheries transfor-
mations induced by climate change, management actions involving 
stocking, harvest regulations, habitat improvements, and commu-
nity manipulations can be readily applied within the RAD framework 

(Dassow et al., 2022; Embke et al., 2022; Feiner et al., 2022; Kocik 
et al., 2022; Psuty, 2022; Rahel, 2022).

Fisheries function as coupled socioecological systems, such that 
RAD approaches for fisheries fall into two broad categories: (1) RAD 
strategies for ecological goals and (2) RAD strategies for social goals 
(Table 1). Ecological strategies encompass management actions to in-
fluence the state or dynamics of the ecological system composition, 
structure, and function. Social strategies encompass management ac-
tions aimed at harvest, livelihoods, and cultural goals associated with 
fisheries. Equity issues are implicit in any reallocation of access, wealth, 

F I G U R E  1  Examples of fisheries transformations associated with climate change, especially warming temperatures. Symbols courtesy 
of and modified from the Integration and Application Network, University of Maryland Center for Environmental Science (Gamito et al., 
2016; Goode et al., 2019; Harrison et al., 2013; Helminen & Sarvala, 2021; Le Bris et al., 2018; Litzow, 2006; Pershing et al., 2015, 2021; 
Raabe et al., 2020; Wenger et al., 2011)
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TA B L E  1  Examples of ecological and social strategies for fisheries management to implement different RAD (Resist-Accept-Direct) 
pathways in relation to ecosystem type. For a more detailed examination of inland recreational RAD strategies, see Rahel (2022). Icons 
adapted from Paukert et al. (2021)

RAD pathway Resist Accept Direct

Ecological 
strategies

Compensatory stocking to maintain 
fishery

Watershed protection to reduce 
eutrophication

Suppress undesirable species favored 
by climate change

Riparian shading to cool water

Flow management

Restore stream network connectivity

Reduce groundwater withdrawals

Reduce hardened shorelines, promote 
living shorelines

Monitor to detect unacceptable system 
changes that may warrant switching to 
other strategies

Cease stocking species disfavored by 
climate change

Deliberately introduce species outside 
native range that are adapted to new 
conditions

Assist migration of impacted species to 
better suited environments

Establish ecosystem engineering 
species that promote desired 
ecological function

Foster migration of saltmarsh 
spawning/nursery habitat further inland

Social 
strategies

Prioritize stakeholder communication 
and education to promote cooperation

Promote watershed- and fisheries-
friendly water and land use practices

Support ‘put-and-take’ fisheries for 
species no longer capable of natural 
recruitment

Adjust harvest levels and implement a 
precautionary approach to maintain 
fishery at reduced levels

Monitor to detect unacceptable system 
change that may warrant switching to 
other strategies

Close fishery during biologically 
sensitive periods (e.g., warm spells)

Establish fishery for prevalent species

Seek to enhance economic value 
given reduced harvest of traditional 
species

Utilize aquaculture to replace lost wild 
capture fisheries

Establish marine protected areas to 
minimize impact to species 
disadvantaged by climate change

Promote transition to species favored 
by climate change

Develop aquaculture for new species 
adapted to changing conditions

Lakes and reservoirs , streams and rivers         , estuaries and coasts         , and offshore
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welfare, and resources and need to be considered when evaluating so-
cial RAD strategies (Kourantidou et al., 2021; Shultz et al., 2022). For 
both ecological goals and social goals, we can envision management 
actions that fall into either resist, accept, or direct pathways for man-
aging fisheries in a changing climate (Table 1). To date, resist pathways 
have been more common for promoting ecological goals, whereas ac-
cept pathways have been more common for social goals.

The partitioning of RAD strategies by social and ecological goals 
is not always clear-cut as the same strategy can impact both. For ex-
ample, implementation of a marine protected area can have an eco-
logical objective of maintaining population age structure and a social 
objective of improving catch per unit effort outside the protected 
area. However, even in such situations, the process of classifying 
strategies can help to identify the available options to manage under 
ecosystem transformations. In transforming aquatic systems, fish-
eries management will need to consider both ecological and social 
strategies; neither can operate successfully in isolation.

2.1  |  RAD strategies for ecological goals

RESIST—Ecological strategies to resist climate-driven fisheries 
transformations include measures to protect or restore habitats 
as well as efforts to maintain extant populations or reintroduce 
extirpated populations through stocking. Habitat-focused strate-
gies occur across multiple and nested scales (e.g. stream reaches, 
riparian area, watersheds; estuaries, bays, coastlines) in aquatic 
systems. Examples of large-scale actions include preventing water 
quality degradation from nutrient and pollutant input with conser-
vation easements that minimise watershed development (Jacobson 
et al., 2013), planting riparian vegetation to reduce stream warming 
(Thomas et al., 2016), and managing water flow to emulate histori-
cal flow regimes (Thompson et al., 2012a). Examples of resistance 
actions at local scales include depositing sediment to elevate and 
maintain tidal wetlands as sea levels rise (Ford et al., 1999), remov-
ing algae on corals to reduce competition and promote coral recruit-
ment (Ceccarelli et al., 2018), deploying artificial reef structures and 
stocking corals in marine environments (Nieves-Ortiz et al., 2021), 
and reducing the impact of flooding and intense storm events on 
fish nursery habitats by reconnecting floodplains through addition 
of woody debris and beaver-dam analogues in riverine environments 
(Thompson, et al., 2012b). Supplementation of sportfish or threat-
ened and endangered species populations from hatchery stocks—
ideally in conjunction with other resistance strategies (e.g. water 
quality improvements, fish passage/dam removal, invasive species 
removal)—may help to maintain economically, ecologically, and/
or culturally important fisheries that are declining due to climate 
change and other anthropogenic drivers (Lorenzen et al., 2013). 
This approach of strategic resistance is being employed in the mid-
western United States (U.S.), where fisheries managers are main-
taining walleye Sander vitreus (Mitchill) fisheries despite little-to-no 
natural recruitment (Raabe et al., 2020). Similarly, supplementation 
hatcheries are another approach to relieve harvest pressure on wild 
populations (Trushenski et al., 2018).

ACCEPT—Ecological strategies to accept fisheries transforma-
tions involve acknowledging that ecological changes are not readily 
reversible, and therefore management efforts can either continue 
operating under business-as-usual or evolve with transforming 
ecosystem conditions. While accept is often considered the default 
choice [i.e. if a system transformation is unobserved (failure to mon-
itor) or unheeded (failure to act)], it is important to note that it can 
be an active, deliberate choice. Acceptance can involve the discon-
tinuation of resistance efforts (e.g. supplemental stocking or habi-
tat restoration) or it can involve the initiation of new management 
actions. For example, changing spawning phenologies driven by 
warming climate may require alterations to the opening and closing 
dates of fishing seasons to protect spawners (Peer & Miller, 2014; 
Tufts et al., 2019). Managers may have to accept that flow or ther-
mal conditions may occasionally become inhospitable to fishes, and 
thus conserving groundwater regimes to enhance connectivity to 
refuges or recolonization sources becomes important for population 
persistence (LeMoine et al., 2020). However, enhanced connectivity 
can also promote the spread of undesirable species (Rahel, 2013).

DIRECT—Ecological strategies to direct fisheries transforma-
tions are not new to fisheries managers. Fisheries management has 
a strong history of manipulations of fish assemblages, food webs, 
and habitat to direct transformations towards conditions that sup-
port fisheries in novel configurations. For example, deliberate intro-
ductions of new species or entire assemblages is a common means 
for directing reservoir fish assemblages to configurations that pro-
vide recreational fisheries. Management upstream of dams often 
focuses on establishing novel, self-sustaining food webs via popu-
lations of lake-adapted, sometimes non-indigenous, sport and for-
age fishes (e.g. largemouth bass Micropterus salmoides (Lacepède), 
bluegill Lepomis macrochirus Rafinesque), while novel, sometimes 
non-indigenous, trout fisheries are a common management strat-
egy for tailwaters below dams in North America (Hubert & Quist, 
2010). Direct strategies specifically related to climate-driven trans-
formation are less common but they can build on this long manage-
ment history. Deliberate introduction of species to systems that are 
outside of their historical range is one possible course of action. 
Although rarely employed, upstream translocations of fish and other 
aquatic organisms above barriers is another action that could result 
in high biodiversity and ecosystems functioning in novel ecosystems 
and could be used to save thermally sensitive species from extinc-
tion (Galloway et al., 2016). Such introductions will need to be done 
with extreme caution given the mounting concerns that introduced 
species can become invasive, imperil other species (particularly in 
previously fishless areas), and cause extensive ecological harm 
(Karasov-Olson, 2021; Rahel & Smith, 2018).

2.2  |  RAD strategies for social goals

RESIST—Social strategies to resist fisheries transformations include 
measures that will maintain fishing opportunities and harvest levels 
to sustain livelihoods and cultural goals. The loss of fishing opportu-
nities can be stemmed by stockings from production hatcheries to 



6  |    LYNCH et al.

provide or enhance opportunities for recreational anglers (Trushenski 
et al., 2018). Precautionary harvest regulations may be adopted that 
strengthen population resilience (i.e. age structures and genetic di-
versity) to better withstand environmental variability and sustain 
ongoing fishing during periods of environmental change (Free et al., 
2020; Munguía-Vega et al., 2015; Planque et al., 2010). Resist strate-
gies can maintain sustainable harvest levels by supporting healthy 
meta-populations to stabilise populations or species via portfolio ef-
fects, and similarly, fishing portfolios can stabilise revenues derived 
by fishers and communities (i.e. catch diversity dampens economic 
variability; Hilborn et al., 2003; Kasperski & Holland, 2013; Schindler 
et al., 2010; Sethi et al., 2014).

ACCEPT—Social strategies to accept fisheries transformations 
include a variety of strategies that enable fisheries to adjust to eco-
system changes. Acceptance can be a de facto strategy if managers 
are unaware that fisheries are being altered by climate change or 
are unwilling/unable to address such changes. But acceptance can 
also be a deliberate strategy if managers recognise that changes 
have occurred and then attempt to manage as best they can under 
the new conditions. In recreational fisheries, this could, for exam-
ple, involve promoting fishing for warmwater largemouth bass in 
warming lakes that were previously managed for coolwater walleye 
fisheries (Dassow et al., 2022). In commercial fisheries, this could 
involve diversification of fishing opportunities as some fisheries 
fail, such as the refocusing on salmon when the Cook Inlet crab and 
shrimp fisheries collapsed from large-scale climate-driven oceano-
graphic changes (Anderson & Piatt, 1999; Mantua & Hare, 2002). 
Fishers may also modify their fishing practices to reduce bycatch 
of non-target species or “choke” species (i.e. species in multispecies 
fisheries with low quotas that can constrain catch of target species), 
particularly as climate change affects the location and productivity 
of target species (Dunn et al., 2016; Lewison et al., 2015). In addi-
tion, the ability of commercial harvesters to switch target species 
can dampen impacts of variability and buffer against changing 
species availability (Finkbeiner, 2015; Fisher et al., 2021), but this 
flexibility may come at a cost for such things as additional equip-
ment, permits, and labour. Management actions that adapt harvest 
levels to match changing stock productivity are key to supporting 
sustainable fisheries with ongoing harvest opportunities as ecosys-
tem conditions change (Gaines et al., 2018; Holsman et al., 2019; 
Kasperski & Holland, 2013; Walters & Martell, 2005). Adjusting 
fishing practices to focus on quality over quantity, direct market-
ing, or a shortened supply chain could maintain income as catch 
levels decrease (Stoll et al., 2015). Additionally, the development 
of aquaculture for existing species that cannot sustain wild fisheries 
could be considered as an important acceptance strategy (Lorenzen, 
2006; Stoll et al., 2019). Furthermore, strategies for accepting eco-
system change need to include adaptation of fishery management 
institutions. Institutions will likely need to increase responsiveness 
by incorporating adaptive measures into existing or new manage-
ment processes (e.g. dynamic ocean management to reduce bycatch; 
Hazen et al., 2018; temperature-triggered temporary closures for 
recreational coldwater fisheries; Jeanson et al., 2021). In addition, 

it may be necessary to adjust jurisdictional authority over a fishery 
as stocks shift across boundaries (Holsman et al., 2019; Pinsky et al., 
2018). For example, Makah Treaty fishing rights are geographically 
limited to the extent of usual and accustomed fishing grounds and 
stations but, as climate change drives range shifts in commercially 
and culturally important fish species, Makah fishers may face de-
creased access to these treaty resources if they are unable to follow 
fish outside the treaty boundaries (Cucuzza et al., 2021). Similarly, 
climate may impact recreational fisheries operations, participation, 
and motivation (Cantrill et al., 2019; Townhill et al., 2019).

DIRECT—Social strategies to direct fisheries transformation 
involve measures that drive social systems towards novel configu-
rations and resource opportunities to replace lost ecosystem ser-
vices. Precautionary harvest moratoriums for species moving into 
new habitat areas provide a period for stocks to become established 
while relevant scientific information and management measures 
are developed (Stram & Evans, 2009). In addition, selective harvest 
measures, such as catch and release requirements or size-based 
rules, can facilitate higher productivity or successful establishment 
of species in new locations (Le Bris et al., 2018), eventually leading 
to fishing opportunities. When ecosystem change cannot be con-
trolled, strategies can be employed to direct fisher responses in the 
context of those changes. For example, programmes to support live-
lihood diversification can reduce reliance on declining resources by 
facilitating job and career opportunities in complementary activities 
(Cusack et al., 2021; Ojea et al., 2020). In addition, the development 
of alternative industries such as aquaculture for new species adapted 
to the changing ecological conditions can sustain certain ecosystem 
services (e.g. food provision) and social functions (e.g. livelihoods) 
while enabling some operational controls on ecosystem conditions 
experienced by the industry (e.g. shellfish hatcheries buffering in-
coming seawater to control aragonite saturation levels detrimental 
to larval survival; Barton et al., 2015).

3  |  CONTROLL ABILIT Y SCENARIOS

Controllability (i.e. the ability to guide a system's behaviour to-
wards a desired state through the manipulation of input variables; 
Liu et al., 2011) affects the feasibility of RAD strategies and deter-
mines what management options are available to address ecosys-
tem transformation. Here, we view controllability on two axes of 
influence where the first axis is the ability to influence the ecologi-
cal system and its trajectory, and the second axis is the ability to in-
fluence the social system and its dynamics in terms of social norms, 
societal values, and economics.

Four controllability scenarios result from this socioecological 
controllability matrix (Figure 2):

•	 Cope—When ecological responsiveness and societal receptivity to 
change is low, managers can cope with aquatic ecosystem trans-
formation, employing ecological accept and social resist strategies. 
For example, when extreme heatwaves led to a severe decline of 
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Pacific cod in the Gulf of Alaska, the response was to accept the 
ecological change by reducing the harvest quota until the stock 
recovers (Barbeaux et al., 2020).

•	 Engineer—When social systems are averse to change but ecolog-
ical systems can be manipulated, managers can engineer their 
domain, employing any ecological and social resist strategies. 
Examples would be enhancing riparian vegetation to prevent 
warming of salmonid streams (Justice et al., 2017; Lawrence et 
al., 2014; Thomas et al., 2016) or the release of cool reservoir 
water to support salmon spawning migrations that would other-
wise be harmed by excessively warm temperatures (e.g. spring-
run Chinook salmon Oncorhynchus tshawytscha (Walbaum) in 
California; Thompson et al., 2012a).

•	 Innovate—When societal receptivity to change is high but eco-
logical systems are not responsive to intervention, managers can 
innovate for the new management frontier, employing ecological 
accept strategies and any social RAD strategies. Directing fisher-
ies efforts to species favoured by climate change or moving from 
capture fisheries to aquaculture would fall into this category.

•	 Create—When both social and ecological controllability are high, 
managers can create diverse options, employing any ecological 
and social RAD strategies such as introductions of species better 
suited for the new ecological conditions.

Ultimately, real world situations may not fit nicely into these four 
idealised scenarios, but the scenarios can help orient planning discus-
sions because they emphasise that both ecological and social RAD 

strategies need to be considered. Maintaining a nimble and iterative 
fisheries management process is critical for effectively addressing 
ecosystem transformation. We envision “triple loop” adaptive man-
agement, whereby higher-level ecosystem management goals and 
objectives are periodically updated to reflect changes in social and 
ecological systems, to play a key role in operationalizing RAD strate-
gies under transforming ecosystems (Lynch et al., 2022; Pahl-Wostl, 
2009). Below are two case studies involving management of trout 
in the Rocky Mountains and Pacific salmon fisheries in Alaska that 
provide examples of RAD strategies portfolios across these four 
scenarios (Figures 3 and 4).

3.1  |  Case study: Recreational fisheries in a 
changing Rocky Mountain region

Cutthroat trout Oncorhynchus clarkii (Richardson) represent an im-
portant coldwater recreational fishery in the Rocky Mountain re-
gion, supporting local and predominantly rural economies. Anglers 
often pay outfitters a premium to fish river habitats occupied primar-
ily by indigenous cutthroat trout, compared to fisheries dominated 
by non-indigenous trout (Pitts et al., 2012). Climate change is caus-
ing stream warming, changing hydrology, and facilitating climate-
mediated hybridization and competition between indigenous and 

F I G U R E  2  RAD strategies across the controllability spectrum of 
ecological responsiveness and societal receptivity to change. Resist 
strategies could be attempted in any scenario; however, ecological 
and social resist strategies are ultimately futile for fisheries 
transformed by rapid, persistent drivers of change and where 
ecological responsiveness is low

F I G U R E  3  Various subspecies of cutthroat trout sustain highly 
valuable recreational fisheries in western North America. Shown 
is the Rio Grande cutthroat trout Oncorhynchus clarkii virginalis (C. 
F. Girard), the southernmost subspecies. Threatened by human 
population growth, climate change, and non-indigenous species, 
these fish now occupy <12% of their historical range (Bakevich 
et al., 2019). [credit: C. Springer]
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non-indigenous trout; all to the detriment of cutthroat trout fish-
eries (Isaak et al., 2018). These changes threaten to transform in-
digenous trout fisheries to systems dominated by non-indigenous 
trout or other species (e.g. smallmouth bass Micropterus dolomieu 
Lacépède; Lawrence et al., 2015).

Cutthroat trout fisheries will vary in ecological responsiveness to 
different RAD interventions, determined by climate change velocity, 
spatial context (i.e. trailing edge, centre, leading edge of shifting cut-
throat trout distributions), and the presence of non-indigenous spe-
cies. At the same time, social receptivity to change in cutthroat trout 
fisheries will determine the RAD strategies that can be employed. 
Together, these dimensions can be used to examine potential RAD 
strategies within the four scenarios (Figure 2).

•	 Cope—Where ecological responsiveness is low, and social recep-
tivity to change is low, accept strategies, such as switching to 
catch-and-release fisheries, reduced creel limits, and fishery clo-
sures during warm spells, all help maintain a cutthroat trout fish-
ery while recognising constraints on manipulating the ecological 
system supporting the fishery.

•	 Engineer—Where responsiveness of the ecological system is 
high, but social receptivity to change is low, RAD strategies to 
resist, both ecologically and socially, include riparian shade en-
hancement, barriers to non-indigenous trout incursion, and non-
indigenous trout removal.

•	 Innovate—In situations of low ecological responsiveness but high 
social receptivity to change, managers can promote the harvest of 
species favoured by climate change such as non-indigenous trout 
(Kovach et al., 2018) or coolwater species (Rubenson & Olden, 
2020).

•	 Create—When ecological responsiveness and societal receptiv-
ity to change are high, managers can consider actions that direct 
fisheries to new states. These can include intentional introduc-
tions of more thermally tolerant, non-indigenous trout species, 
shifting from coldwater to coolwater fisheries, or establishing 
trout populations above natural migration barriers where they 
historically did not occur (Galloway et al., 2016). Directing fish-
eries to new states will require a significant risk evaluation 
(Karasov-Olson et al., 2021) and an evaluation of the capacity 

of indigenous cutthroat species to adapt to climate changes be-
fore these more extreme approaches are exercised (Thurman 
et al., 2020). Ultimately, there is flexibility to employ any of the 
ecological and social RAD strategies in the other scenarios pro-
vided they do not conflict with efforts to manage other species. 
For example, translocation of trout populations to fishless wa-
ters may conflict with efforts to conserve other taxa, such as 
amphibians (Knapp et al., 2007).

When climate change is driving transformation in a cutthroat 
trout fishery, simultaneously examining the dimensions of ecolog-
ical responsiveness and social receptivity to change allows manag-
ers to consider the full range of ecological and social RAD strategies 
under various scenarios (i.e. engineer, cope, innovate, and create). 
Ecological responsiveness may include evaluating climate velocity 
for the local fishery (i.e. slow change makes ecological resist strat-
egies more feasible; fast change may preclude them), while social 
receptivity to change may include evaluating angler preferences 
(e.g. an existing fishery with indigenous and non-indigenous trout 
components may be more receptive to change than an indigenous-
only fishery). Clearly, constraints and opportunities to use these 
strategies will vary by local context, but considering all options, 
rather than adhering to one regardless of cost and efficacy, will en-
hance success at responding to transformations in cutthroat trout 
fisheries.

3.2  |  Case study: Navigating transforming 
ecosystems in Alaskan salmon fisheries

Five Pacific salmon species, Chinook, chum O.  keta (Walbaum), 
coho O.  kisutch (Walbaum), pink O.  gorbuscha (Walbaum), sockeye 
O. nerka (Walbaum), contribute substantially to commercial, sport, 
and subsistence fisheries throughout the state of Alaska (Figure 4). 
These anadromous fishes are exposed to a suite of climate-driven 
and anthropogenic stressors in coastal watersheds and marine en-
vironments throughout their life cycle. Salmon-bearing ecosystems 
in Alaska span the spectrum of low to high ecological controllabil-
ity and social receptivity to management changes. Stakeholders are 

F I G U R E  4  Purse seiners commercially 
fish for Pacific salmon (Oncorhynchus spp.) 
by a hatchery in Prince William Sound, 
Alaska, U.S. [credit: S.A. Sethi]
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utilising a portfolio of RAD strategies to navigate rapidly changing 
marine and freshwater ecosystems.

•	 Cope—Environmental change has transformed marine and fresh-
water conditions at scales sufficient to interrupt salmon spawn-
ing in remote regions where ecological resist strategies such as 
hatchery supplementation are infeasible. For example, chum and 
Chinook salmon contribute to important subsistence harvest re-
sources for communities throughout the Yukon River drainage, 
yet heatwaves cause pre-spawning mortality in warming rivers 
(Westley, 2020). Similarly, Chinook salmon populations have 
declined dramatically over the past decade in these regions and 
the root causes have proved difficult to identify (Ohlberger et al., 
2018). In these cases where ecological controllability is low and 
where salmon stakeholders rely heavily on subsistence harvests, 
managers have had to accept ecological changes and attempt 
to resist loss of subsistence harvest opportunities by restricting 
commercial fisheries on chum and Chinook salmon as well as re-
ducing bycatch of these species in marine commercial fisheries 
through bycatch caps.

•	 Engineer—Social norms and regulatory statutes support large 
salmon hatcheries in Alaska, although debate continues as to the 
risks hatchery programmes present for wild salmon populations 
(e.g. Rand et al., 2012). Nevertheless, with 1.7 billion juveniles 
stocked annually across the state, hatchery supplementation to 
buffer against variable and in some cases declining wild salmon 
recruitment is a primary ecological and social resist strategy em-
ployed by salmon managers to maintain harvest opportunities in 
the face of rapidly changing environmental conditions (Wilson, 
2021).

•	 Innovate—In some regions of Alaska, stakeholders have had to 
accept ecological changes that are underpinning continued de-
clines in salmon stocks, but social receptivity to change among 
some stakeholder groups is high. This has opened the door to 
social direct strategies to adapt to system changes. For example, 
some salmon fishers in southeast Alaska are changing business 
practices to vertically integrate and market high-value seafood 
products directly to consumers, generating new value and trans-
forming the fishery towards different seafood supply chains (e.g. 
Bolton et al., 2016; Sitka Salmon Shares, https://sitka​salmo​nshar​
es.com/).

•	 Create—Ecological direct strategies involve steering ecosys-
tems and species assemblages into new, more desirable config-
urations through species introductions or habitat manipulation 
efforts such as altering disturbance regimes. These actions are 
difficult, if not impossible, to implement in open marine systems 
compared with freshwater systems (see recreational fisheries 
case study above), although social direct strategies may still be 
possible. Ecosystem managers are resisting ecological change to 
maintain salmon fishing opportunities in urban areas of southcen-
tral Alaska by restoring river connectivity in degraded watersheds 
(O’Doherty et al., 2020; Sethi et al., 2017). Similarly, managers are 
collaborating with a new and broader mix of stakeholders to direct 

societal change towards a conservation stewardship ethic and 
mixed-use access for salmon watersheds through collaborative 
research and improved land-use decision-making forums (Walker 
et al., 2021).

Warming climate and changing hydrology is transforming 
salmon-bearing watersheds across Alaska. Furthermore, as urbani-
sation has progressed, the bundle of ecosystem services demanded 
from salmon-bearing watersheds has changed significantly. In par-
ticular, previously low human use in coastal watersheds and a focus 
on commercial salmon harvests have now been replaced by demand 
for sport and personal-use salmon harvests, and land-use for hous-
ing, business, road works, and trail use. RAD provides a framework 
for identifying the combination of ecological and social actions ap-
plicable for managing Pacific salmon at different spatial scales in a 
changing climate.

4  |  IMPROVING CONTROLL ABILIT Y

To maintain the broadest suite of available RAD management strate-
gies, fisheries managers can focus on improving controllability. This 
focus can shake the decision paralysis that often leads to futile resist 
strategies (i.e. those that do not achieve desired outcomes) or inevi-
table accept strategies (i.e. those with only one possible outcome). 
But, both ecological responsiveness and societal receptivity to 
change are substantial hurdles. Low societal receptivity to change is 
common, and can limit management actions to social resist strategies 
whereas high social receptivity allows for social accept and direct 
strategies (Figure 2). Low ecological responsiveness to intervention 
limits options to ecological accept strategies whereas high ecological 
responsiveness opens the door to resist and direct strategies.

To move from low controllability to high controllability scenarios, 
managers will need to assess the current status of their socioecolog-
ical system and the timescales required to improve controllability. 
Both social and ecological change can be rapid and interact to drive 
ecosystem transformation (Beever et al., 2019). Furthermore, posi-
tioning along either of these axes may change overtime. For exam-
ple, initial resistance to social change may be replaced by acceptance 
as fishers experience increasingly dire economic consequences due 
to ecosystem transformations or as social and economic conditions 
change to make alternative options more desirable. Or, technologi-
cal advances may make ecological manipulations more viable, such 
as the development of thermally tolerant genotypes for species de-
clining in a warming climate (Van Oppen et al., 2015; Morikawa & 
Palumbi, 2019; e.g. heat-tolerant corals; Buerger et al., 2020; Caruso 
et al., 2021).

Controlling the ecological system state presumes a working 
knowledge of biotic and abiotic drivers and their relationships 
with each other in influencing system dynamics. While we may 
have a general knowledge of ecological cause and effects, this 
understanding may be based on previous system states, and not 
relevant for new or altered trajectories. This lack of stationarity in 

https://sitkasalmonshares.com/
https://sitkasalmonshares.com/
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ecological conditions is a primary motivation for adopting the RAD 
management framework (Thompson et al., 2021). The increasing 
acknowledgement of this non-stationarity and the importance of 
interacting ecosystem factors has led to the call for moving from 
single species management to ecosystem-based fisheries manage-
ment (Barbeaux et al., 2020; Hilborn, 2004; Link, 2002; Pikitch 
et al., 2004). The RAD management framework fits decidedly 
within ecosystem-based fisheries management, but with a focus 
on managing those ecosystems through transformations. Case in 
point, the ability to change an ecosystem trajectory is a complex 
process of ecological functions influenced by social, economic, and 
policy factors. Advances in control theory and network analysis 
show promise for improving predictive controllability for simpli-
fied ecological systems where economic and social elements are 
incorporated (Benavides et al., 2015). Still, socioecological systems 
are rarely simple or well understood. Approaching these challenges 
within the RAD framework can help guide decisions and improve 
system knowledge and controllability.

Controlling the social systems governing fisheries is even less 
straightforward than controlling the ecological systems. The actions 
of fisheries stakeholders are motivated by political and regulatory 
systems, economic factors, norms, and value systems. Thus, the 
structure and scale of social systems drive receptivity to manage-
ment interventions and can affect the feasibility of RAD options for 
both social and ecological processes (Clifford et al., 2022). Fishery 
stocks are common pool resources and coordination among stake-
holder groups is a prerequisite for effective management (Ostrom, 
1990). The number and diversity of stakeholder groups involved in 
a socioecological system can affect receptivity to management in-
terventions (Grimble & Wellard, 1997). Smaller fisheries with fewer 
stakeholder groups may achieve consent more readily and may en-
able a greater range of RAD options. For example, managing inland 
recreational fisheries under transforming lake ecosystems may re-
quire coordination with a handful of stakeholder groups such as 
local angling clubs and lake associations (Rahel, 2022). In contrast, 
marine and coastal fisheries are often large in scale and encom-
pass commercial, recreational, and subsistence fishers, in addition 
to stakeholders from other ocean-use activities such as tourism 
or energy (e.g. Psuty, 2022). A case in point involves the Atlantic 
goliath grouper Epinephelus itajara (Lichtenstein). Overexploitation 
led to a fishery closure and as the population recovered, a tour-
ism industry developed for divers seeking to see and photograph 
these enormous fish. Efforts to re-establish a fishery were resisted 
by the dive-tourism industry, which argued that the fish should be 
managed as a non-extractive resource with a commercial value 
greater than that gained through fishing (Koenig et al., 2020). 
That said, even small fishery systems can face stakeholder conflict 
where specific groups dominate the management process with 
self-interested behaviour that prevents deliberation and progress 
in implementing RAD options. Thus, stakeholder communication, 
coordination, and education will feature heavily in defining the fea-
sibility of both ecological and social RAD options (Clifford et al., 
2022; Davies et al., 2015).

4.1  |  Ecological responsiveness

Ecological responsiveness (i.e. our ability to control the trajectory 
of ecosystem change) is likely to be strongly dependent on spatial 
scale and system complexity. Controllability in large-scale aquatic 
systems is particularly challenging. Stream reaches are more likely 
to be controllable than entire watersheds; small lakes are likely more 
controllable than large lakes; and marine systems, which are large 
and complex, are relatively uncontrollable.

There are a number of tools and promising innovations that can help 
to clarify ecological responsiveness through improving understanding 
of system dynamics. First, technological advancements including re-
motely sensed data, autonomous underwater vehicles, drone-based 
data collection, and environmental DNA samplers have increased our 
ability to monitor ecosystem changes and responses to management 
actions (Toonen & Bush, 2020; Wang et al., 2021). Second, even in sit-
uations that are data-limited, rapidly expanding fields of data science 
as well as emerging new artificial intelligence techniques and cloud-
based computing data storage may help us to understand mechanisms 
and functions of aquatic systems and fisheries (Bradley et al., 2019). 
Increasing computational capabilities (e.g. Bayesian belief networks, 
accessible machine learning application software, and management 
strategy evaluations) can also advance decision analysis by helping op-
timise management choices given multiple objectives and information 
uncertainty (Elith et al., 2008; Kaplan et al., 2021; Marcot et al., 2006). 
To the extent that models can be developed that simulate ecosystem 
processes, management actions can be tested using the models be-
fore on-the-ground manipulations are undertaken (Gomes, 2019). For 
example, trophic models can be used to predict the response of lake 
ecosystems to changes in nutrient loadings as a result of changes in 
land-use practices (Weng et al., 2020). Similarly, in response to re-
peated climate-forced ecological perturbations, a management strat-
egy evaluation that combines downscaled or global climate models 
with climate-enhanced biological models (and socio-economic models 
in some cases) can be used to explore realistic options to lessen im-
pacts on species and identify potential novel opportunities to better 
manage fish and fisheries (e.g. in the Gulf of Alaska, A’mar et al., 2009; 
along the U.S. West Coast, Haltuch et al., 2019; and Smith et al., 2021; 
in the Bering Sea, Hollowed et al., 2020).

With better understanding of system dynamics, interventions 
to manipulate those systems and improve controllability are being 
cautiously considered. For example, translocations and novel ge-
netic tools, such as gene editing, with their far-reaching ethical im-
plications, are being examined for application in agricultural systems 
(Karavolias et al., 2021) and coral restoration (Van Oppen et al., 
2015), and could be more broadly considered to facilitate species 
and biological community adaptation to climate change.

4.2  |  Societal receptivity to change

Societal receptivity to change is a moving target. For example, 
“shifting baselines” is a common phenomenon in fisheries and can 
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alter societal receptivity on the order of generations (Jackson et al., 
2001). However, sometimes even stable environmental policy can 
undergo sudden jumps or dramatic change very quickly (Repetto, 
2006). For example, the U.S. had a Congressional moratorium on 
new catch share programmes (also called dedicated access privilege 
programmes) in place from 1996 to 2002. In the years that directly 
followed, many new catch share programmes were quickly enacted 
across the country (Baker, 1999; also see: NOAA Fisheries Catch 
Share Programs by Council Region, https://www.fishe​ries.noaa.
gov/natio​nal/susta​inabl​e-fishe​ries/catch​-share​-progr​ams-counc​
il-region).

In addition to facilitating stakeholder coordination, several con-
siderations related to the structure of governance systems may help 
to improve the receptivity of social systems to RAD options under 
transforming ecosystems. First, governance systems need to accom-
modate the spatial and temporal scale of ecosystem transformation, 
for example, by aligning management jurisdictions to ecologically 
relevant scales and/or facilitating transboundary governance forums 
(Cumming et al., 2006; Pinsky et al., 2018). This may be particularly 
important in marine systems where large-scale redistributions of 
species continue to accelerate (Ojea et al., 2020) and for species 
with highly migratory life histories (Kocik et al., 2022; Miller et al., 
2013). Similarly, efforts to ensure that RAD strategies persist across 
governance leadership changes are also necessary to align the tem-
poral stability of management processes with ecosystem dynamics 
(e.g. Castrejón et al., 2014).

Second, dedicated access privileges are in effect for many large 
marine fisheries and other fisheries are considering implementing 
similar policies. While there is evidence that catch shares may sup-
port sustainable harvests (Costello et al., 2008; Melnychuk et al., 
2012), policies which set up rigid access entitlements may restrict 
opportunities for course corrections under transforming ecosys-
tems, particularly for species with highly migratory life histories as 
well as those with shifting distributions (e.g. Acheson et al., 2015). In 
the face of rapid ecosystem change, perceptions of permanent enti-
tlements may lock managers into status quo management to satisfy 
historical access claims. This could hamper support for fisher liveli-
hood adaptation under direct strategies to respond to transforming 
ecosystems (e.g. Criddle, 2012). Requiring periodic policy reviews 
and instituting sunset dates for entitlements can provide options to 
either renew existing policies or alter the course in response to eco-
system change (Lynch et al., 2021b).

5  |  HUMILIT Y AND AGILIT Y

Managing fisheries within transforming aquatic systems will require 
both humility and agility, attributes that are essential for current 
and future fisheries sustainability. Ecosystem transformations can 
make fisheries managers feel powerless and incapable of meaning-
ful intervention when they have little control over the transforming 
systems in which they work. Although fisheries managers cannot 
substantially change global climate trajectories, they can play a 

part in adaptation solutions. Fisheries managers can help guide re-
sponses to the socioecological transformations wrought by climate 
change (Table 1). The RAD framework can empower fisheries man-
agers to act in the face of uncertainty through system transforma-
tion by helping identify feasible actions and shifting focus towards 
improving controllability (ecological responsiveness and/or societal 
receptivity to change), thereby altering the decision landscape.

It is also important to recognise that there are “windows of op-
portunity” to implement any RAD strategy (Magness et al., 2022b). 
While rash decisions are rarely constructive, delayed action can in-
crease the risk of irreversible change to aquatic ecosystems and can 
result in lost opportunities for resist or direct strategies and lost time 
to prepare for adapting to ecosystem changes under an accept strat-
egy (Lynch et al., 2021b). Particularly, when a window of opportunity 
is short or management is for an endangered species, paralysis can 
equate to higher economic costs, increased losses to fisheries, and 
greater consequences to aquatic ecosystems. It may be necessary 
to act quickly to implement resist strategies in an open system, such 
as culling an undesirable species expanding its range with warming 
waters, before such interventions become ineffective. On the other 
hand, managers of a more closed or smaller-scale system (i.e. with 
greater ecological responsiveness) may have more flexibility to eval-
uate alternative approaches before selecting and implementing one. 
Optimising these windows of opportunity can give fisheries manag-
ers the ability to move beyond futile resist or inevitable accept ap-
proaches and open up a diverse portfolio of ecological and social 
RAD strategies.

While the focus of this piece has centred on climate change 
as the driver of aquatic ecosystem transformation, the RAD ap-
proach to management can provide a useful framework to address 
any impactful pressures on fisheries. Transforming ecosystems as 
driven by changing climate or any other stressors behave in un-
predictable manners, presenting stakeholders with the daunting 
prospects of managing under high system variability and high un-
certainty. Yet, through iterative and deliberate management, RAD 
approaches provide a useful framework for pressing ahead. With 
an understanding of a system's ecological responsiveness and so-
cietal receptivity to change (Figure 2), managers can identify eco-
logical and social RAD strategies (Table 1) suitable for use in their 
system context. Pragmatically, ecological, societal, and financial 
feasibility considerations will constrain the availability of actions 
to implement desired RAD strategies (Lynch et al., 2021b). Thus, 
a cost-benefit analysis stage to assess potential actions will be an 
important operational step for implementing RAD approaches to 
managing transforming fisheries. If the set of available options is 
insufficient, managers may seek to address the controllability of 
the systems they manage to expand the potential set of feasible 
management actions and potentially open up new RAD strategies. 
Once a RAD strategy and associated management actions are im-
plemented, iterative monitoring, experimentation, evaluation, and 
adjustments can be made, along with periodic re-evaluation of 
higher-level management goals and relevant RAD strategies in an 
ongoing cycle (Lynch et al., 2022).

https://www.fisheries.noaa.gov/national/sustainable-fisheries/catch-share-programs-council-region
https://www.fisheries.noaa.gov/national/sustainable-fisheries/catch-share-programs-council-region
https://www.fisheries.noaa.gov/national/sustainable-fisheries/catch-share-programs-council-region
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